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LETTER TO THE EDITOR 

Diagram techniques in quantum optics : radiative decay and 
broadening 

G E Stedman 
Department of Physics, University of Canterbury, Christchurch I ,  New Zealand 

Received 15 December 1973 

Abstract. We give what is apparently the first rigorous justification of Feynman 
diagram methods in quantum optics. As an example, we generalize single-atom 
radiative decay theory to all orders of perturbation of all interactions, by analogy with 
earlier work on phonon broadening. 

Several authors have used Feynman-type diagrams in quantum optics (LOW 1952, 
Fano 1961, Ward 1965, Walls 1971, Knight and Allen 1972, 1973, Chang and Stehle 
1971a, b, Duncan 1972, Morawitz 1973, Nishikawa and Aono 1973, Gontier and 
Trahin 1973). I n  such treatments the atomic states are represented by boson, fermion 
or spin operators. However, in each of these cases the diagram formulation requires 
more justification, since the representation of atomic levels by boson or fermion 
operators introduces unphysical states into the theory, and since obtaining a Wick 
theorem for spin operators is not a trivial problem. 

We shall represent an atomic level In)  by an+jO) where 10) is a vacuum and an+ 
obeys fermion (anti)-commutation relations. Both the vacuum and the ‘multi-particle’ 
states (eg am+an+ IO), m # n) are unphysical, and therefore give spurious contributions 
to quantities evaluated using the fermion diagram expansion. Two corrections are 
needed. First, the use of Abrikosov’s procedure (Abrikosov 1965) (adding h to the 
energy of each fermion state, and then taking a certain limit in which h tends to infinity) 
kills the effect of the multi-particle states. This has the elegant effect of cancelling out 
diagrams of an easily recognizable class. Second, the vacuum contributions affect the 
denominator in the expression for any observable, and in the same limit give rise to 
the breakdown of the linked cluster theorem. Appropriate correction factors should be 
introduced (Larsen 1972, Verwoerd 1973, Oppermann 1973 and references therein). 
The first, but not the second, of these corrections has usually been applied by workers 
unaware of these subtleties. Some aspects of these considerations are depicted in 
figure 1. 

By way of illustration, we now consider the shift and damping of an atomic transi- 
tion interacting with a reservoir. In this problem one studies the decay of the operator 
Mij = u i + q  (Lax 1966), or equivalently the quasi-particle resonance of the Green 
function 

Gij(E) = *( T(Mij(T)Mji> > 
where T,  is the chronological operator and S- represents a Fourier transform. Since 
the same Green function is examined, and since all interactions have their exact 
analogues, the theory becomes isomorphous to that previously examined in the 
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phonon broadening problem (Stedman 1972). The conclusions in that work may there- 
fore be translated directly to  the radiative broadening case. (This represents final 
confirmation that there is no substance in Brout's distinction between radiative and 

Figure 1. (a) Dyson equation for the fermion single-particle Green function GI(E) .  
A plain line signifies the fermion propagator for zero interaction, and a wiggly line 
the unperturbed photon propagator. (b) The self-energy operator &(E) in the Dyson 
equation. Knight and Allen (1972), for example, essentially calculate the first term 
in this perturbation expansion. ( r )  Examples of diagrams cancelled by the Abrikosov 
procedure. 

non-radiative broadening (Brout 1957); cf Stedman 1970.) These conclusions are: 

transition : 
(i) The Weisskopf-Wigner formula for the radiative broadening Fii of the i + j  

rii = w,+ wi (1) 

A . .  13 = S.-S. 1 3  (2) 

and the Ritz combination principle for the corresponding shift: 

imply the neglect of electron-hole scattering diagrams (vertex corrections) in the two- 
particle Green function G,,(E) (figure 2). Here the one-particle shift and width (Si, W , )  

Figure 2. The Bethe-Saltpeter type equation for the fermion two-particle Green 
function. The cross-hatched box represents an irreducible scattering vertex. The 
first term on the right-hand side represents the approximation in which equation (1) 
holds, ie that of ignoring the scattering vertex. 

are to be defined as the real and imaginary parts of a lorentzian approximationt to  the 
self-energy Ci of the one-particle Green function Gi(E)  = 9( T, (u~(T)u~+) ) .  

"In Stedman (1972) the lorentzian approximation was chosen so that in studying a certain possible 
decay mode, only the leading term in the coefficient is considered. Thus we consider only second- 
order perturbation contributions to direct (one-photon linear) atomic absorption rates, etc. This 
permits an otherwise general proof of (ii) and (iii), and it also eliminates the effect of unlinked dia- 
grams. 
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(ii) The effect of the scattering vertex diagrams is to modify equation (l), but not 
equation (2) which is always valid. 

(iii) The contributions of the scattering vertex diagrams to equation (1) may be 
interpreted physically as the effects of elastic interaction with photons, eg (but not only) 
elastic Raman scattering. 

These results generalize those of Lax (1966), who showed that, to second order, 

I',, = &(I') + IT]) + r i , p i l  (3) 

where rllPh reflected the effects of elastic (phase) interaction+. Lax also discussed 
'anomalous shifts' which would disobey the Ritz combination principle, and was able 
to prove that second-order anomalous shifts vanished only when the system obeyed 
time-reversal symmetry and when there was no interaction among the reservoir modes. 
We emphasize that our proof is valid, independently of time-reversal properties, for 
all types of atom-reservoir interactions and internal interactions, including anti- 
resonant terms and non-linear effects of all kinds, and is valid for all orders of per- 
turbation. Thus our generalization of the Weisskopf-Wigner theory (equations (2) and 
(3)) is not confined to RWA (cf Knight and Allen 1973). We note that the leading 
term in S ,  in the phonon case (Stedman 1972) is just that found by Knight (1972) in 
the photon case, with each reservoir in thermal equilibrium (ie T 4 )  (cf also Gontier 
and Trahin 1973). 

Equation (3) has also been derived in the context of pressure broadening (Fano 
1963); in this case elastic electron scattering gives rise to  a non-separable width con- 
tribution. 

Already there is experimental evidence that equation (1) is inadequate for the 
phonon case (Stedman and Cade 1973). In the photon case, one is not dependent 
solely on thermal radiation, and i t  has proved possible to stimulate one atomic transi- 
tion while studying the lineshape from another (Bose and White 1971 and references 
therein). It is therefore unsatisfactory to assume the accuracy of equation (1) in 
analysing such experiments (as does Holt 1968). We would rather suggest that such 
experiments are ideally suited t o  test our predictions, Elastic scattering effects should 
be relatively important if the stimulating laser frequency is slightly different from that 
of the atomic transition, so that the direct absorption effects are eliminated. 

I am grateful to  Drs D F Walls, C W Gardiner, F Ansbacher and D Smith for 
discussions. 
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